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Abstract

A novel approach to the optimization of flexible columns against buckling is presented. Previous published studies,

considering either continuous or discrete finite element models, are always constrained to specific relations between

stiffness and mass distributions of the column. These, besides yielding impractical configurations that do not conform to

manufacturing and production requirements, result in designs that are certainly suboptimal. The present model for-

mulation considers columns that can be practically made of uniform segments with the true design variables defined to

be the cross-sectional area, radius of gyration and length of each segment. Exact structural analysis is performed,

ensuring the attainment of the absolute maximum critical buckling load for any number of segments, type of cross

section and type of boundary conditions. Detailed results are presented and discussed for clamped columns having

either solid or tubular cross-sectional configurations, where useful design trends have been recommended for optimum

patterns with two, three and more segments. It is shown that the developed optimization model, which is not restricted

to specific properties of the cross section, can give higher values of the critical load than those obtained from con-

strained-continuous shape optimization. In fact, the model has succeeded in arriving at the global optimal column

designs having the absolute maximum buckling load without violating the economic feasibility requirements.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and historical review

The optimal buckling design of a slender column may be defined as finding the maximum value of the

critical buckling load for a given structural weight, or alternatively it may be to minimize the structural

weight that satisfies a prescribed buckling load. Maximization of the buckling load is essential to enhance
the overall structural stability by decreasing the possibility of reaching an unstable equilibrium position

under any contemplated loading. A large number of publications have appeared on this topic where the

eigenvalue optimization algorithms were applied to either continuous or discretized finite-element struc-

tural models. Keller (1960) determined the strongest simply supported column having the maximum
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buckling load 33.33% higher than that of the uniform column. However, the obtained shapes with a highly

non-linear geometry and zero cross sections at the support locations were constraint by the relation

I ¼ aA2, where I is the second moment of area, A is the cross-sectional area and a is a constant. Tadjbakhsh
and Keller (1962) extended this work to cover other end conditions. Their analytical solutions using the

method of calculus of variations were also valid only under the same cross-sectional constraint, producing

highly non-linear shapes that, besides being suboptimal, cannot be practically manufactured and produced

(see Fig. 1). The cross-sectional area reached zero values at some locations along the column�s length, which
resulted in unrealistic shapes subjected to infinite compressive stresses. In 1967, Taylor presented a more

direct and concise energy method than that developed by Tadjbakhsh and Keller. His approach was also

restricted to the same quadratic relation, and applied to a simply supported column. The resulting sub-

optimal buckling load, however, was less than that found by Keller by about 5.5%. Prager and Taylor
(1968) treated a variety of problems of optimal design of sandwich structures where a linear relationship

between I and A was assumed. A simply supported column was optimized resulting in a parabolic wall

thickness distribution with vanishing magnitudes at the ends. Later on, Taylor and Liu (1968) applied

Valentine (1937) mathematical procedure for variational problems to establish optimum shapes of sand-

wich cantilevered columns under an inequality constraint on the cross-sectional area. Their maximum

buckling load reached a value 21.6% higher than that of the uniform cantilever. Strongest column was also

addressed by Simitses et al. (1973) where a finite element displacement formulation was applied to elasti-

cally restrained columns subjected to a varying axial load. The attained optimization gain, under the same
constraint I ¼ aA2, for a cantilever divided into 20 equally spaced elements was about 32.5% with the

penalty of reaching infinite compressive stress at the free end. Masur (1975) treated other types of columns

built of covering plates, with the design variables taken to be only the locations of the plates along the

column. Masur did not consider important variables of the cross-sectional properties in his model for-

mulation. Moreover, he used a complementary energy format with an iterative design-analysis sequence,

which was only valid to solve pinned–pinned and clamped–free boundary conditions.

Some authors have demonstrated that the optimal buckling design could be multi-modal in which the

final optimum solution can have a double (bimodal) or triple (trimodal) eigenvalue with distinct eigen-
functions. Olhoff and Rasmussen (1977) considered both single and bimodal buckling optimization of

clamped columns with geometrically similar cross sections (i.e. I ¼ aA2). Their resulting suboptimal odd-

shaped columns with a complicated non-linear area distribution violate fabrication and production feasi-

bility. Another work dealing with solid circular cantilevers subjected to tip axial force and own weight was

treated by Hornbuckle and Boykin (1978). The optimization problem was handled via Pontryagin�s
maximum principle, where the attained optimization gain was about 11.5%. Turner and Plaut (1980)

considered clamped–clamped columns using an iterative procedure based on the optimality criterion ac-

complished by the finite element method. The column was divided into 20 uniform elements with equal
lengths, and the resulting optimization gain was 27.6% under the same quadratic constraint imposed on the

cross-sectional properties. Plaut et al. (1986) determined optimal designs for sandwich columns attached to

elastic foundations. Again, the resulting optimum shapes having highly non-linear thickness distributions

Fig. 1. Awkward suboptimal cross-sectional area distribution of clamped–clamped columns (I ¼ aA2).
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of the facing sheets are too difficult to fabricate economically. Other important application of the optimal

control theory to buckling optimization was given by Goh et al. (1991). A simply supported column

constructed from five piecewise constant segments was optimized with the design variables taken to be only

the length and area of each segment. The optimization problem formulation contained many mathematical
formulae to calculate derivatives of both the objective and constraint functions, and the obtained final

suboptimal solutions were restricted to the same deficiency of assuming geometrically similar cross sections.

Ishida and Sugiyama (1995) proposed an optimization algorithm, referred to as the constructive algorithm,

applied to a finite element model. Numerical solutions were restricted to clamped–free and clamped–pinned

columns having circular solid cross sections. The maximum buckling load of a 16-equally-spaced element

model was calculated to be 31% higher than that of a uniform model. Manickarajah et al. (2000) also used

the finite element method in conjunction with an iterative procedure for optimizing columns and plane

frames against buckling. A local modification of each element was assessed by gradually shifting the ma-
terial from the strongest part of the structure to the weakest one while keeping the structural weight

constant. Optimum designs with single and double modal were considered under the constraint I ¼ aA2,

which was applied by Keller in 1960.

As seen above, almost all of the previously developed models, whether continuous or discretized, re-

sulted in a highly non-linear or irregular odd-shaped columns that are too difficult, perhaps impossible, to

fabricate or produce practically. In addition the obtained designs are only suboptimal designs because they

were constrained to specific relations between stiffness and mass distributions of the column. It is the major

aim of the present work to introduce a practical optimization model for obtaining the absolute maximum
buckling load of columns, which can be practically constructed without any restrictions imposed on the

cross-sectional properties. The study considers optimization of an Euler–Bernoulli�s beam-column made of

any arbitrary number of uniform segments with the actual design variables defined to be the cross-sectional

area, radius of gyration and length of each segment. Investigators who apply finite element methods always

miss the length variable. It must be recognized here that, such model is not an approximation to a con-

tinuous model, as some readers may think. Rather, it represents a real structure that can be directly utilized

in several practical engineering applications. The number of segments does not affect the accuracy of the

resulting solutions. The developed exact structural analysis leads to the exact optimal buckling design no
matter the number of segments is. The model formulation can also deal with any type and shape of cross

sections and any type of boundary conditions. Numerical examples and detailed results are given for

clamped columns built of two, three and more segments. The major goals of achieving both of global

optimality and productivity have been adequately satisfied, and the obtained optimum patterns can be

implemented for a variety of cross section types and shapes. In fact, the overall structural stability has been

improved substantially as compared with that obtained from continuous shape optimization.

2. Exact structural analysis

This section is confined to the determination of the exact critical buckling load, Pcr, of a real column
structure made of any arbitrary number of uniform segments having different cross-sectional properties and

length, as shown in Fig. 2. Before performing the necessary mathematics, it is important to bear in mind

that design optimization is only as meaningful as its core structural analysis model. Any deficiencies therein

will certainly be reflected in the optimization process. Previous solutions using classical finite element

methods, where the displacements are usually approximated by cubic polynomials, were restricted to

columns built of many equally spaced uniform elements (e.g. Simitses et al., 1973; Turner and Plaut, 1980;

Manickarajah et al., 2000). If the elements are few and of unequal lengths with appreciable discrepancies,

such approximate methods are not recommended to apply, especially when dealing with structural opti-
mization.
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The simplest problem of equilibrium of a column compressed by an axial force, P, was first formulated

and solved by the great mathematician Euler in the middle of the 18th century. The governing differential

equation of bending–buckling (refer to Bleich, 1952; Timoshenko and Gere, 1961) of any uniform Kth

segment is

EIk
d4v
dx4
þ P

d2v
dx2
¼ 0 ð1aÞ

where x denotes the axial coordinate, v transverse deflection, P applied axial force, E young modulus and Ik
second moment of area. It will be more convenient to non-dimensionalize all variables and parameters with

respect to a baseline design having uniform mass and stiffness distributions with the same total length,

material properties, and cross-sectional type and shape. Dividing Eq. (1a) by (EIk=L3), one gets

d4ðv=LÞ
dðx=LÞ4

þ PL2

EI

� �
1

ðIk=IÞ
d2ðv=LÞ
dðx=LÞ2

¼ 0 ð1bÞ

where L is the total length and I the second moment of area of the reference uniform column. The various
dimensionless quantities are defined in Table 1. For example, the notation v v=L means that the di-

mensionless deflection v is equal to the dimensional v divided by the column�s length. It is to be noticed that

the same symbol that defines a dimensional quantity is reused to define its corresponding dimensionless

quantity in order to avoid having many symbols and notations in the manuscript. Therefore, the non-

dimensional form of Eq. (1b) becomes

v0000 þ P 2
k v
00 ¼ 0; Pk ¼

ffiffiffiffiffiffiffiffiffi
P=Ik

p
; k ¼ 1; 2; . . . ;Ns: ð1cÞ

where ð Þ0 means differentiation with respect to the dimensionless x. Eq. (1c) must be satisfied in the interval

06�xx6 Lk, where �xx ¼ x� xk. Its general solution is

Fig. 2. General layout of a multi-segment column structure.

Table 1

Definition of non-dimensional quantities

Quantity Non-dimensionalization

Axial coordinate x x=L
Length of the Kth segment Lk  Lk=L
Wall thickness tk  tk=t
Radius of gyration rk  rk=r
Cross-sectional area Ak  Ak=A
Second moment of area Ik  Ik=I
Bending deflection v v=L
Bending moment M  M�ðL=EIÞ
Shearing force F  F �ðL2=EIÞ
Axial force P  P �ðL2=EIÞ
Structural mass Ms  Ms=M ¼

PNs
k¼1 AkLk

� �
Reference parameters: L ¼ total column length, A ¼ cross-sectional area, r ¼ radius of gyration, I ¼ second moment of area, t ¼ wall

thickness.
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vð�xxÞ ¼ a1 sin Pk�xxþ a2 cos Pk�xxþ a3�xxþ a4 ð2Þ
The coefficients ai�s can be expressed in terms of the state variables ½v;u;M ; F 
 ¼ ½v;�v0;
�Ikv00; ð�Ikv000 � Pv0Þ
 at both nodes of the Kth segment, which results in the following matrix relation

vkþ1
ukþ1
Mkþ1
Fkþ1

8>><
>>:

9>>=
>>;
¼

1 �Sk
Pk

�ð1�CkÞ
P

Sk
PPk
� Lk

P

� �
0 Ck

PkSk
P

ð1�CkÞ
P

0 �PSk
Pk

Ck
Sk
Pk

0 0 0 1

2
66664

3
77775

vk
/k

Mk

Fk

8>><
>>:

9>>=
>>;

ð3Þ

where Sk ¼ sin PkLk and Ck ¼ cos PkLk. Applying Eq. (3) successively to all the segments composing the
column and taking the products of all the resulting matrices, the state variables at both ends of the column

can be related to each other through an overall transfer matrix denoted by [T]. Therefore, by the appli-

cation of the appropriate boundary conditions and consideration of the non-trivial solution, the associated

characteristic equation for determining the critical buckling load can be accurately obtained. Table 2 gives

the final form of the buckling equation for several types of end supports.

3. Formulation of the buckling optimization problem––a novel concept

In formulating an optimization problem, three principal phases must be considered

• Definition and measure of the design objectives.

• Definition of the design constraints.

• Definition of the design variables and preassigned parameters.

In the present study the objective function is represented by maximization of the critical (lowest)

buckling load subject to a specified structural mass. The preassigned parameters are those variables that do

not change in the optimization process. They are chosen to be the properties of the material of construction,
type and location of supports, type and shape of the cross section and the total length of the column. All

Table 2

Characteristic equations for calculating Pcr for different boundary conditions

Type of boundary conditions Characteristic equation Reference value of Pcra

Clamped–free

v1 ¼ u1 ¼ 0 and MNsþ1 ¼ FNsþ1 ¼ 0 T33T44 � T34T43 ¼ 0 2.4674 (¼ðp=2Þ2)

Clamped–pinned

v1 ¼ u1 ¼ 0 and WNsþ1 ¼ MNsþ1 ¼ 0 T13T34 � T14T33 ¼ 0 20.1907 (�ðp=0:7Þ2)

Clamped–clamped

Whole span:

v1 ¼ u1 ¼ 0 and WNsþ1 ¼ uNsþ1 ¼ 0 T13T24 � T14T23 ¼ 0 39.4784 (¼ð2pÞ2)
Half span:

v1 ¼ u1 ¼ 0 and uNsþ1 ¼ FNsþ1 ¼ 0 T23T44 � T24T43 ¼ 0 39.4784

Pinned–pinned

Whole span:

v1 ¼ M1 ¼ 0 and WNsþ1 ¼ MNsþ1 ¼ 0 T12T34 � T14T32 ¼ 0 9.8696 (¼p2)

Half span:

v1 ¼ M1 ¼ 0 and uNsþ1 ¼ FNsþ1 ¼ 0 T22T44 � T24T42 ¼ 0 9.8696

aCalculated for a uniform one-segment column.
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these parameters are determined from a baseline design having uniform properties lengthwise. Their in-

clusion in a more spacious optimization model is now under study by the author. In fact, the proper

definition of the design variables is of great importance in formulating a design optimization model. As has

been early shown, in the introduction above, the major drawback of almost all of the previous publications
is to constrain the problem to a specified relation between the cross-sectional second moment of area and

the area of the column being optimized. This must certainly lead to suboptimal designs rather than the

needed global ones. To accurately define the true design variables that have a direct bearing on buckling

optimization, let us first examine, as a fundamental case study, a uniform cantilevered column composed of

one segment. Referring to Table 2, the associated buckling equation is

cos

ffiffiffiffi
P
I1

r
L1 ¼ 0 ð4Þ

which has the non-trivial solution for the lowest (critical) buckling load given by

Pcr ¼
p2I1
4L2

1

; ðI1 ¼ A1r21Þ ð5Þ

On the other hand, the non-dimensional structural mass is expressed as (see Table 1)

Ms ¼ A1L1 ð6Þ
It is obvious that the main design variables affecting buckling optimization are the area A1, radius of gy-

ration r1 and the segment length L1. In fact, this problem can be easily solved by the well-established
unconstrained mathematical programming techniques (Vanderplaats, 1984), with the elimination of one of

the design variables using the explicit expression of the mass equality constraint. Therefore, substituting for

Ms ¼ 1, which means that the optimized column has the same total mass of its baseline design, the buckling

load can be expressed by the relation

Pcr ¼
p2

4

� �
r21
L3
1

ð7Þ

which may be thought of as an explicit function describing the critical buckling load in terms of the

variables r1 and L1. It is noticed that Pcr increases monotonically with r1 and decreases with L1, which is a
natural expected behavior. Therefore, instead of treating Pcr as an implicit function, it is possible to choose

prescribed values for Pcr and either r1 or L1 and solve Eq. (4) numerically for the remaining unknown

variable, which must also satisfy Eq. (7). These important mathematical fundamentals will be confirmed

and applied to columns composed of more than one segment.

4. Optimization of clamped columns with solid cross sections

4.1. Clamped–free columns

For a cantilevered column composed of two segments, the characteristic equation (refer to Table 2) can

be shown to have the following compact form

tan P1L1 tan P2L2 ¼ P2=P1 ð8Þ
Fig. 3 shows the developed level curves for cross sections with constant breadth-to-depth ratio (see Table

3). It is seen that the Pcr-function is well behaved and continuous in the design variables r1 and r2. It in-
creases monotonically with solutions exist only in the second and fourth quadrants because mass cannot be
unity in the other quadrants. The optimum zone lies in the second quadrant with a global maximum non-

5870 K.Y. Maalawi / International Journal of Solids and Structures 39 (2002) 5865–5876



dimensional load equal to 2.9805 which represents a gain of about 20.975%. The corresponding optimum

solution is shown to be near the design point ðr; LÞk ¼ ½ð1:08; 0:7245Þ; ð0:75; 0:2755Þ
. Table 4 presents the

optimum results for cantilevers built of more than two segments. The increase in the number of segments

would, naturally, result in higher values of the critical buckling load. However, care ought to be taken for

the increased cost of the necessary machine tooling or assembling connections.

Fig. 3. Actual optimal buckling design of two-segment cantilevered columns with solid cross section (Ms ¼ 1).

Table 4

Optimum-buckling design of cantilevered columns, solid sections with constant breadth-to-depth ratio

Ns ðr; LÞk , k ¼ 1; 2; . . . ;Ns ðPcrÞmax Gain (%)

1 (1,1) 2.4674 –

2 (1.08, 0.7245), (0.75, 0.2755) 2.9805 20.795

3 (1.111, 0.570), (0.911, 0.29), (0.636, 0.140) 3.1359 27.10

4 (1.125, 0.475), (1.0, 0.275), (0.775, 0.175), (0.5, 0.075) 3.1865 29.144

5 (1.13, 0.417), (1.049, 0.204), (0.917, 0.191), (0.747, 0.106), (0.548, 0.082) 3.22805 30.83

Table 3

Definition of cross-sectional properties

Shape Type Area, A Radius of gyration, r

Rectangular (a > 1)a Thin-walled hollow 2Dtð1þ aÞ D
2

ffiffiffiffiffiffiffiffiffiffi
1þ3a
3ð1þaÞ

q

Square (a ¼ 1) Solid aD2 D=2
ffiffiffi
3
p

Elliptical (a > 1) Thin-walled hollow pDtð1þ aÞ=2 D
4

ffiffiffiffiffiffiffiffi
1þ3a
1þa

q

Circular (a ¼ 1) Solid apD2=4 D=4

a a is the breadth-to-depth ratio, and D is the mean depth of the cross section.
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4.2. Clamped–clamped columns

More results have been obtained by considering the effect of end-supports on the optimum-buckling

design. The case of clamped–clamped column has been investigated by extensive computer analysis. So-
lutions indicated that optimum patterns must be of symmetrical mass and stiffness distributions about the

mid-span point. When starting the optimization process with an even number of segments the computer

discarded one segment by letting its length sink to zero, or by making two consecutive segments having

nearly the same cross-sectional properties. For example, it is proved that there is no way to maximize Pcr of
a two-segment clamped–clamped column above the reference value of 39.4784. Fig. 4 depicts the optimum

zone of a symmetrical five-segment column having unit non-dimensional mass. More optimum patterns for

columns with different number of segments are given in Table 5. It is to be observed that optimum columns

Fig. 4. Global optimal design of a clamped–clamped column built of five segments with solid cross sections (Ms ¼ 1).

Table 5

Optimum-buckling design of clamped–clamped columns, solid sections with constant breadth-to-depth ratio

Ns ðr;LÞk , k ¼ 1; 2; . . . ;Ns ðPcrÞmax Gain (%)

1 (1,1) 39.4784 –

2 ð1;L1Þ, ð1; 1� L1Þ, L1e½0; 1
 39.4784 –

4 [(1.1125, 0.1688), (0.9375, 0.3312)]S
a or [(0.9375, 0.3312), (1.1125, 0.1688)]S 41.6406 5.477

6 [(1.0762, 0.1825), (0.7562, 0.135), (1.0762, 0.1825)]S 47.69766 20.82

10 [(1.0938, 0.15625), (0.9062, 0.0625), (0.61565, 0.0625), (0.9062, 0.0625),

(1.0938, 0.15625)]S

49.9922 26.632

14 [(1.123, 0.1209), (0.9815, 0.07365), (0.7778, 0.0349), (0.522, 0.0411), (0.7778, 0.0349),

(0.9815, 0.07365), (1.123, 0.1209)]S

51.089 29.42

a [- - -]S means symmetrical about mid-span point.
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with the number of segments exceed three must be doubly symmetrical, i.e. symmetrical about both the
quarter and mid-span points. Therefore, for such cases, it is possible to deal only with one-fourth of the

total number of the design variables, which reduces computational efforts and time substantially.

Other cases including optimization of clamped–clamped columns with constant breadth have also been

implemented. The maximum non-dimensional buckling load for a symmetrical 14-segment column has

reached a value of 52.985, which represents about 34.213% optimization gain, exceeding previous published

results. The corresponding non-dimensional optimum pattern is found to be

½ðr; LÞk
 ¼ ½ð1:221; 0:0843Þ; ð1:0624; 0:08784Þ; ð0:8095; 0:05014Þ; ð0:47567; 0:05544Þ;
ð0:8095; 0:05014Þ; ð1:0624; 0:08784Þ; ð1:221; 0:0843Þ
S:

This is one of the major outcomes of the present model formulation, which is completely independent

upon a specific cross-sectional properties. Some of the published results for optimum clamped–clamped

columns are summarized in Table 6. Comparing with the results given herein, it can be noticed that op-

timum columns do not have to be built from equally spaced uniform elements. They can be economically
made of a fewer number of segments having different cross-sectional properties and length. Almost all

investigators who use the finite element method always miss the effect of the latter. It becomes also evident

now that one does not have to discretize the column into more segments in order to increase the accuracy of

the resulting solutions. Each problem with a specified number of segments has its own exact global optimal

solution. Moreover, it becomes very clear that the true optimization model should not be restricted to

certain stiffness and mass distributions of the column being optimized, a major drawback of almost all

previous publications.

5. Buckling optimization of tubular columns

Tubular sections are more economical than solid sections for compression members. By optimizing the
transverse dimensions and wall thickness the overall stability can be substantially improved. There is a

lower limit for the wall thickness, however, below which the wall itself becomes unstable, and instead of

buckling of the column as a whole, there occurs a local buckling which brings about a corrugation of the

wall. This condition requires the analysis of cylindrical shell buckling, which is out of the scope of the

present study.

Extensive computer implementation for thin-walled tubular constructions has proved the existence of

well-behaved isomert buckling curves. Two illustrative examples of cantilevered columns made of two

segments are considered herein. Fig. 5 shows the developed contours for columns having the wall thickness
held at its design value in order to avoid the possibility of local instability. It is remarked that the segment

Table 6

Maximum critical load of clamped–clamped columns, previous publications

Reference Model type ðPcrÞmax

Turner and Plaut (1980) 
 Solid section with constant breadth-to-depth ratio 50.37


 20-equally spaced finite elements

Plaut et al. (1986) 
 Sandwich rectangular section with constant depth and breadth 47.96


 Non-linear optimal thickness distribution of facing sheets

Manickarajah et al. (2000) 
 Solid circular section with inertia proportional with the square of the

cross-sectional area

52.269


 Bimodal optimization using 100-equally spaced finite elements
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length has a considerable effect on the resulting optimum shape, a factor always ignored by authors who

utilize finite element models. Optimum patterns for different number of segments are given in Table 7. A

36.5% optimization gain has been reached for a cantilever only made of five segments not equally spaced,

which represents a truly optimized column design. The second case is shown in Fig. 6, where cantilevers

with constant radius of gyration are optimized. Optimal wall thickness distributions are given in Table 8 for

cantilevers built from more segments. The gain for the case of five segments is seen to be 19.91%, which is

Fig. 5. Optimal 2-segment tubular cantilevers with uniform wall thickness (Ms ¼ 1; t1 ¼ t2 ¼ 1).

Table 7

Optimum tubular cantilevers with uniform wall thickness distribution (tk ¼ 1, k ¼ 1; 2; . . . ;Ns, Ms ¼ 1)

Ns ðrk ;LkÞ, k ¼ 1; 2; . . . ;Ns ðPcrÞmax Gain (%)

1 (1, 1) 2.4674 0

2 (1.1167, 0.75), (0.65, 0.25) 3.072 24.5

3 (1.185, 0.507), (0.935, 0.3325), (0.555, 0.1605) 3.2476 31.62

4 (1.195, 0.495), (0.9875, 0.2825), (0.687, 0.1455), (0.395, 0.077) 3.3477 35.70

5 (1.2135, 0.392), (1.0975, 0.207), (0.916, 0.217), (0.6285, 0.109), (0.3985, 0.075) 3.368 36.5

Fig. 6. Optimal thickness distribution of a 2-segment tubular cantilevered column (Ms ¼ 1; r1 ¼ r2 ¼ 1).
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much less than that given in the first example, because the radius of gyration, the missed variable in pre-
vious publications, has always the dominant effect on the optimization process.

The same mathematical consequences developed above can also be extended to cover other configura-

tions and boundary conditions. The resulting optimum pattern of a symmetrical 14-segment clamped–

clamped column with the wall thickness distribution kept constant at the reference design value

(tk ¼ 1; k ¼ 1; 2; . . . ;Ns) is calculated to be

ðrk; LkÞ ¼ ½ð1:1882; 0:12783Þ; ð0:97434; 0:054446Þ; ð0:79768; 0:039861Þ; ð0:47585; 0:055723Þ;
ð0:79768; 0:039861Þ; ð0:9743; 0:054446Þ; ð1:1883; 0:12783Þ
S

The corresponding optimal value of the non-dimensional buckling load is 53.18 representing about 34.71%

optimization gain, which exceeds that obtained from continuous shape optimization subject to the usual

constraint I ¼ aA2.

6. Conclusions

In view of the importance of improving the overall stability level of flexible columns, an appropriate
optimization model has been formulated by considering a multi-segment column structure and maximizing

its critical buckling load for a given total mass and length. Based on the fact that an exact analysis for

uniform Euler�s beam segment is available and well established, the exact buckling load is obtained for any

number of segments, type of cross section and type of boundary conditions. It is shown that the actual

design variables that have a direct bearing on buckling optimization must include the cross-sectional area,

radius of gyration and length of each segment composing the column. The model excels those of continuous

or discretized finite element formulations in two main aspects. First, the continuous and finite element

models fail to produce practical shapes that can conform to industrial requirements, as does the present
multi-segment model. Second, with the calculus of variation or optimal control formulations, the opti-

mization is always constrained by a specific relation between the mass and stiffness distributions, which

yields certainly to suboptimal designs rather than the needed global ones. In addition, to these drawbacks in

the continuous and finite element model formulations, the present multi-segment model has the advanta-

geous of achieving global optimality for column shapes that can be fabricated economically from any

arbitrary number of uniform segments. The model has been applied successfully to clamped columns with

either solid or tubular cross-sectional configurations. Computer solutions have indicated that the buckling

load, even though implicit function in the design variables, is well behaved, monotonic and defined ev-
erywhere in the selected design space. The buckling load is found to be very sensitive to variation in the

segment length. Investigators who use finite elements have not recognized that the length of each element

can be taken as a main design variable in addition to the cross-sectional properties. Future studies will

Table 8

Optimal thickness distribution of tubular cantileversa

Ns ðtk ;LkÞ, k ¼ 1; 2; . . . ;Ns ðPcrÞmax Gain (%)

1 (1,1) 2.4674 0

2 (1.25, 0.6875), (0.45, 0.3125) 2.822 14.4

3 (1.3547, 0.514), (0.846, 0.2785), (0.3325, 0.2075) 2.9116 18.0

4 (1.395, 0.43), (1.041, 0.248), (0.605, 0.192), (0.205, 0.13) 2.9487 19.50

5 (1.4505, 0.25), (1.2545, 0.25), (0.9825, 0.215), (0.5525, 0.170), (0.1725, 0.115) 2.9587 19.91

aConstant radii of gyrations (rk ¼ 1, Ms ¼ 1).
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include the effect of shear deformation, rotary inertia and non-linearties due to large deformation. The

method can be also extended to cover buckling optimization of several types of framed structures.
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